Tipp 2011

FEE TRACK SUMMARY

JP WALDER

- ✓ Most of CMOS and SOI designs are using 0.35um → 0.12um
 We are the first designing a mixed mode circuit in 65nm..
- ✓ Presentation from Bob, Carl, Devis and Lea went well and triggered questions and comments.
- ✓ Valerio Re (INFN): 3D pixel chip using Tezarron for SuperB.

Superpix1: a 3D CMOS chip for 50x50 um² pixels

This plot shows that an optimum condition exists for the threshold correction operation (DAC output range $\approx 5\sigma_{th}$):

Charge sensitivity	48 mV/fC
Peaking time @ 16000 injected electrons	260 ns
ENC	130 e-
Threshold dispersion before/after correction	560/65 e-
Analog power consumption	10 μW/pixel

To be connected to a high resistivity pixel sensobetector capacitance

150 fF

	Digital s	ection
1st Layer		
2 nd Layer	Analog section	
sensor		

Matrix size	128×32 pixels
Pixel pitch	50 μm

The readout architecture is the same as in the 3D MAPS device

- ✓ Most of CMOS and SOI designs are using 0.35um → 0.12um
 We are the first designing a mixed mode circuit in 65nm..
- ✓ Presentation from Bob, Carl, Devis and Lea went well and triggered questions and comments.
- ✓ Valerio Re (INFN): 3D pixel chip using Tezarron for SuperB.
- ✓ Michael Cooney (University of Hawaii): Pixel Upgrade for Belle II.

Process: Silicon on Insulator

- ROHM Semiconductor
 - 0.2μm
- Designs include:
 - CAP5, CAP7, CAP9, CAP11,
 CAP12
 - Process actively researched
 - Designed for detectors by ROHM/OKI Semiconductor
 - Continued development with collaborators:
 - KEK, ROHM/OKI, FNAL, LBNL, UH

Charge collection mechanism in SOI process.

Readout Type: Hexagonal

- Each pixel outputs binary signal in three directions to periphery (CAP9)
- Multiple rows of shifting logic (TLM)
 - More transfer lines = higher readout speed

TLM Effectiveness

detector	matrix	pitch	shift clock	outputs	(effective) occupancy
binary	800x240	25 µm square	2 MHz (internal lines)	480	0.124
binary	800x240	25 µm square	10 MHz (internal lines)	480	0.005
binary hexagonal $TM = 8$	960x240	25 µm hexagonal	100 MHz (external lines)	48	2.2E-04
binary hexagonal TM = 12	960x240	25 µm hexagonal	100 MHz (external lines)	72	5.2E-05
binary hexagonal TM =24	960x240	25 µm hexagonal	100 MHz (external lines)	144	2.7E-05
analog rolling shutter	420x120	50 um square	9 us integration time	120	0.016

11

- ✓ Most of CMOS and SOI designs are using 0.35um → 0.12um
 We are the first designing a mixed mode circuit in 65nm..
- ✓ Presentation from Bob, Carl, Devis and Lea went well and triggered questions and comments.
- ✓ Valerio Re (INFN): 3D pixel chip using Tezarron for SuperB.
- ✓ Michael Cooney (University of Hawaii): Pixel Upgrade for Belle II.
- ✓ Gianluca Aglieri Rinella (CERN): TDC 75ps timing resolution for the NA62 Gigatracker

TDCpix block diagram

Requirements

- 45 x 40 pixel channels
 300 x 300 μm²
- Chip hit rate ~130 MHz
- Timing resolution 200 ps RMS
- Readout efficiency 98 %
- Power budget
 2 W/cm²

Architecture

- Analog pixel matrix, digital EoC
- Transmission lines send discriminated hits to EoC
- Data driven, trigger-less
- Data output: 4x 2.4 Gb/s
- IBM CMOS 130 nm, 1.2V, 8 Metal layers

Timing resolution limit of sensor

Timing resolution

- Laser: 75 ps RMS

- Test beam: 175 ps RMS

Random fluctuations of input current signal shape

- Position of track hit in pixel
- Charge straggling

Ongoing studies

- Track hit position
 - Position scan with laser: 85 ps RMS
- Charge straggling
 - > 60 ps RMS

- ✓ Most of CMOS and SOI designs are using 0.35um → 0.12um
 We are the first designing a mixed mode circuit in 65nm..
- ✓ Presentation from Bob, Carl, Devis and Lea went well and triggered questions and comments.
- ✓ Valerio Re (INFN): 3D pixel chip using Tezarron for SuperB.
- ✓ Michael Cooney (University of Hawaii): Pixel Upgrade for Belle II.
- ✓ Gianluca Aglieri Rinella (CERN): TDC 75ps timing resolution for the NA62 Gigatracker
- ✓ Gary Varner (University of Hawaii): Deeper sampling CMOS transient waveform recorder for UHE Radio Neutrino

Switched Capacitor Array Sampling

Now a variety of options...

ASIC	Amplification?	# chan	Depth/chan	Sampling [GSa/s]	Vendor	Size [nm]	Ext ADC?
DRS4	no.	8	1024	1-5	IBM	250	yes.
SAM	no.	2	1024	1-3	AMS	350	yes.
IRS2	no.	8	32536	1-4	TSMC	250	no.
BLAB3A	yes.	8	32536	1-4	TSMC	250	no.
TARGET	no.	16	4192	1-2.5	TSMC	250	no.
TARGET2	yes.	16	16384	1-2.5	TSMC	250	no.
TARGET3	no.	16	16384	1-2.5	TSMC	250	no.
PSEC3	no.	4	256	1-16	IBM	130	no.
PSEC4	no.	6	256	1-16	IBM	130	no.

- → Success of PSEC3: proof-of-concept of moving toward smaller feature sizes.
 - Next DRS plans to use 110nm; next SAM plans to use 180 nm.

- ✓ Most of CMOS and SOI designs are using 0.35um → 0.12um
 We are the first designing a mixed mode circuit in 65nm..
- ✓ Presentation from Bob, Carl, Devis and Lea went well and triggered questions and comments.
- ✓ Valerio Re (INFN): 3D pixel chip using Tezarron for SuperB.
- ✓ Michael Cooney (University of Hawaii): Pixel Upgrade for Belle II.
- ✓ Gianluca Aglieri Rinella (CERN): TDC 75ps timing resolution for the NA62 Gigatracker
- ✓ Gary Varner (University of Hawaii): Deeper sampling CMOS transient waveform recorder for UHE Radio Neutrino
- ✓ E Oberla (University of Chicago): Large area picosecond photodetector collaboration (LAPPD)

The LAPPD project

Development of large-area, relatively inexpensive Micro-

Channel Plate (MCP) photo-detectors

- 8" x 8" tubes = 'tile'

Much more: Saturday 4-6pm, Ballroom 9

"Super Module":

2x3 array of 8" tiles

PSEC-3 + (upcoming) PSEC-4

PSEC-3

PSEC-4

	SPECIFICATION	ACTUAL	SPEC
Sampling Rate	500 MS/s-17GS/s	2.5 GSa/s-17GS/s	2.5 GSa/s-17GS/s
# Channels	4	4	6 (or 2)
Sampling Depth	256 cells	256 Cells	256 (or 768) points
Sampling Window	256*(Sampling Rate)-1	256*(Sampling Rate)-1	Depth*(Sampling Rate)-1
Input Noise	1 mV RMS	1-1.5 mV RMS	<1 mV RMS
Dynamic Range	0-1V	0-1V	0-1V
Analog Bandwidth	1.5 GHz	Average 600 MHz	1.5 GHz
ADC conversion	Up to 12 bit @ 2GHz	Up to ~10 bit @ 2GHz	Up to 12 bit @ 2GHz
Latency	2 μs (min) – 16 μs (max)	3 μs (min) – 30 μs (max)	2 μs (min) – 16 μs (max)
Internal Trigger	yes	yes	yes

Red= issues addressed from PSEC-3

- ✓ Most of CMOS and SOI designs are using 0.35um → 0.12um
 We are the first designing a mixed mode circuit in 65nm..
- ✓ Presentation from Bob, Carl, Devis and Lea went well and triggered questions and comments.
- ✓ Valerio Re (INFN): 3D pixel chip using Tezarron for SuperB.
- ✓ Michael Cooney (University of Hawaii): Pixel Upgrade for Belle II.
- ✓ Gianluca Aglieri Rinella (CERN): TDC 75ps timing resolution for the NA62 Gigatracker
- ✓ Gary Varner (University of Hawaii): Deeper sampling CMOS transient waveform recorder for UHE Radio Neutrino
- ✓ E Oberla (University of Chicago): Large area picosecond photodetector collaboration (LAPPD)
- ✓ Salleh Amhad (IN2P3/OMEGA, France):

 Spaciroc/Easiroc.Readout ASIC for JEM-EUSO and also for SiPM readout

EASIROC ANALOGUE CORE

EASIROC LAYOUT

Technology: AMS 0,35µm SiGe

32 trigger outputs

Die size: 16.6mm²

4.157 x 4.013 mm²

Package:

- Naked (PEBS)
- TQFP160

2 MUX charge outputs (LG + HG)

OR32 output

1 MUX trigger output

TQFP: heigth=1.4 mm

In a nutshell....

- ✓ Gustavo Cancello (Fermilab): Noise reduction technique using LBNL CCDs. Achieving 0.5e at 50 kpix/s based on estimator for low frequency noise implemented in a FPGA
- ✓ ATLAS Lar Calorimeter: Frontend electronics upgrade for HL LHC: (BNL)

 New IC for the preamp instead of discrete (0.25um SiGe)

New mixed mode IC to replace DMILL

ATCA based readout out...